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Industrial context

Global context on Lithium-ion batteries
Growing demand of Lithium-ion batteries for electrical vehicles and energy storage
Investments of TotalEnergies with SAFT on this field
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Industrial context
For a new battery design it is important to model its degradation

▶ To set its price (lifetime models)
▶ To understand the ageing mechanism

Some long and expensive tests are performed (several months or even years)
Several indicators of state-of-health can be considered
Here we focus on the decreasing of the capacity of the battery with time
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Industrial context

Lifetime prediction?
Difficulties to predict batteries lifetime: complex ageing mechanisms, cost of testing ...
Need to determine uncertainties to assess financial risks
Explain battery lifetime, find solutions to improve it
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Industrial context

Which data?
Few industrial data available in our context!
Increasing quantity of public data
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Industrial context

Goals
Model with uncertainties the time evolution of state of health of a population of batteries
given the experimental conditions
Important focus on uncertainties modeling to assess the financial risk related to
performance guarantees
Choice to model the complete health degradation not only lifetime
Not application dependant and provides a more complete understanding of the degradation
process
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Industrial context
Modelling uncertainties?

Aachen university dataset
47 batteries, one experimental condition (25°C, CC at 2C until 3.9V and CV until 30
minutes)
Ideal to model uncertainties and for forecasting

An important source of uncertainties is the inter-battery variability which increases with time
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Industrial context

A Data-driven approach relying on Gaussian processes (GPs) [See Rasmussen 2006]
Can automaticaly learn complex functions
Naturally include uncertainties
Allow use of prior knowledge
Can be used with few data
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Background on GPs
GPs are extensions of Gaussian vectors
Random functions f defined thanks to

▶ a mean function m : m(t) = E[f (t)]
▶ a kernel k encoding the covariance of (f (t), f (t ′)) :

k(t, t ′) = E [(f (t)−m(t))(f (t ′)−m(t ′))]

The choice of the kernel has a major influence on the GP.
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Gaussian processes regression (GPR)

Vanilla GPR considers the following regression model

y = f (t) + ε

where
y is the variable to explain (capacity of the battery here)
t is the explanatory variable (time here)
f is the mean function to estimate
ε is a noise related to measurement error
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Gaussian processes regression (GPR)
GPR is a Bayesian approach where we set a GP prior on f with mean m (usually set to zero)
and a parametric kernel k
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Gaussian processes regression (GPR)

Estimation of hyperparameters of the GP by maximizing the marginal likelihood given the
training data

p(y1, · · · , yn|t1, · · · , tn)

After that, we can compute the posterior law of f at new inputs
Vanilla GPs implemented in the Python library GPflow (see https://www.gpflow.org/)
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Gaussian processes regression (GPR)

We applied vanilla GPs to obtain an interpretable model

y = f1(t) + f2(t) + f3(t, b) + ε

where
f1 : degradation trend
f2 : bias at each cycle
f3 : inter battery variability
ε : noise measurement
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Gaussian processes regression (GPR)

Prediction with Vanilla GPs
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Gaussian processes regression (GPR)

Main drawbacks of Vanilla GPs
Two main physical features of the degradation process are not included

The variance of the phenomena is increasing with time
The capacity is decreasing with time

Our solution : chained GPs including monotonicity constraints
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Chained GPs [Saul et al. 2016]

Chained GPs are models to handle models depending non linearly on several independent
GPs
Instead of considering

y = f1(t) + f2(t) + f3(t, b) + ε

one consider
y = f1(t) + f2(t) + σ(t)f3(t, b) + ε

where σ(t) = g(η(t)) with η GP, g positive function (sigmoid for e.g.)
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Chained GPs [Saul et al. 2016]

Inference step
Starting point : likelihood function

p(y |f1, · · · , f3, η)

One sets independent Gaussian process priors on f1, f2, f3, η

Model too complex to have an exact posterior law
⇒ has to be approximated
variational inference approach with optimization of the evidence lower bound (ELBO)
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Chained GPs [Saul et al. 2016]

Qualitative results

Prediction with CGPs
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Chained GPs [Saul et al. 2016]

Quantitative comparison between GPR and CGP models
Metric to validate prediction : mean absolute error (MAE)
Metric to validate uncertainty quantification : negative log predictive density (NLPD)
(Quinonro 2005)

NLPD = − 1
n∗

n∗∑
i=1

log p(y∗i |t∗i )
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Chained GPs [Saul et al. 2016]
Quantitative comparison between GPR and CGP models
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Chained GPs [Saul et al. 2016]
Previous model can be adapted to work on several experimental conditions

Prediction with CGPs at different temperature conditions
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Limits of GPR and CGP for forecasting
Methods using Gaussian processes face difficulties to forecast
Predictions for future cycles should be decreasing
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CGPs with monotonocity constraint (Lavaron et al. 2023)
(Riihimaki, 2010) proposed a method to impose local monotonocity on GPR
Extension of this method for CGPs?
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CGPs with monotonocity constraint (Lavaron et al. 2023)

We add virtual points translating our prior knowledge.
At positions X v we add virtual observations zv taking values in {0, 1}, 0 if fd should be
decreasing, 1 if it should be increasing.
To integrate them into our model, we suppose that

zvi |f ′d ,i ∼ B(s(f ′d ,i )),
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CGPs with monotonocity constraint (Lavaron et al. 2023)

Including virtual observations, the model has an extended likelihood
We use variational inference based on a ELBO for inference
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CGPs with monotonocity constraint (Lavaron et al. 2023)

Qualitative comparison
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CGPs with monotonocity constraint Lavaron er al. 2023

Quantitative comparison
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CGPs with monotonocity constraint (Lavaron et al. 2023)

Quantitative comparison
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CGPs with monotonocity constraint (Lavaron et al. 2023)

Quantitative comparison
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CGPs with monotonocity constraint (Lavaron et al. 2023)

In practice several constraints can be included at the same time
On each function of the Chained Gaussian process model : mean and inter-batteries
variability
On different directions when working with different experiental factors : mean of capacity
decreases with time and temperature
On different order of derivatives ; second order derivative to model acceleration of capacity
degradation
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