Handling uncertainties in industrial context? A statistical point of view

Benjamin Larvaron Marianne Clausel Antoine Bertoncello Sébastien Benjamin Georges Oppenheim

CRAN-SAFT

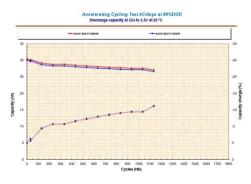
Table of contents

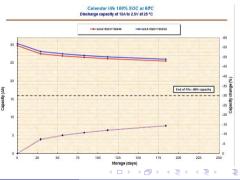
- Industrial context
- Background on GPs
- Chained GPs
- 4 Inclusion of prior knowledge on derivatives

Global context on Lithium-ion batteries

- Growing demand of Lithium-ion batteries for electrical vehicles and energy storage
- Investments of TotalEnergies with SAFT on this field

- For a new battery design it is important to model its degradation
 - ► To set its price (lifetime models)
 - ▶ To understand the ageing mechanism
- Some long and expensive tests are performed (several months or even years)
- Several indicators of state-of-health can be considered
- Here we focus on the decreasing of the capacity of the battery with time





Lifetime prediction?

- Difficulties to predict batteries lifetime: complex ageing mechanisms, cost of testing ...
- Need to determine uncertainties to assess financial risks
- Explain battery lifetime, find solutions to improve it

Which data?

- Few industrial data available in our context!
- Increasing quantity of public data

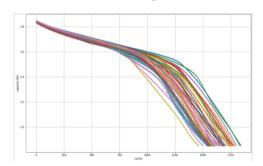
Location with weblink	Paper ref	Cell (form size chemistry)	Test variables	Data given	No. of cells
NASA [53, URL]	[10]	18650 2 Ah (?)	Dhrg, T	Q, IR, V, I, T	34
	[9]	18650 2.2 Ah LCO	Chrg, Dhrg, T	Q, IR, V, I, T	28
CALCE [67, URL]	[68,70]	prismatic 1.1 Ah LCO	Chrg, Dhrg	Q, IR, E, V, I, T	15
	[68,70]	prismatic 1.35 Ah LCO	Chrg, Dhrg, T	Q, IR, E, V, I, T	12
	[13]	pouch 1.5 Ah LCO	Chrg, DOD	Q, V, I	16
TRI [71, URL]	[6]	18650 1.1 Ah LFP/gr	Chrg	Q, IR, V, I, T	124
	[72]		Chrg	Q, V, I, T	233

Goals

- Model with uncertainties the time evolution of state of health of a population of batteries given the experimental conditions
- Important focus on uncertainties modeling to assess the financial risk related to performance guarantees
- Choice to model the complete health degradation not only lifetime
- Not application dependant and provides a more complete understanding of the degradation process

Modelling uncertainties?

- Aachen university dataset
- 47 batteries, one experimental condition (25°C, CC at 2C until 3.9V and CV until 30 minutes)
- Ideal to model uncertainties and for forecasting



An important source of uncertainties is the inter-battery variability which increases with time

A Data-driven approach relying on Gaussian processes (GPs) [See Rasmussen 2006]

- Can automaticaly learn complex functions
- Naturally include uncertainties
- Allow use of prior knowledge
- Can be used with few data

Table of contents

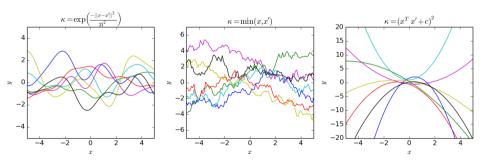
- Industrial contex
- 2 Background on GPs
- Chained GPs
- 4 Inclusion of prior knowledge on derivatives

Background on GPs

- GPs are extensions of Gaussian vectors
- Random functions f defined thanks to
 - ▶ a mean function $m: m(t) = \mathbb{E}[f(t)]$
 - ▶ a kernel k encoding the covariance of (f(t), f(t')):

$$k(t, t') = \mathbb{E}[(f(t) - m(t))(f(t') - m(t'))]$$

• The choice of the kernel has a major influence on the GP.



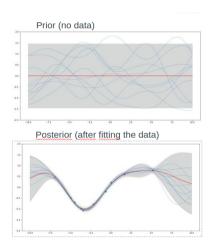
Vanilla GPR considers the following regression model

$$y=f(t)+\varepsilon$$

where

- y is the variable to explain (capacity of the battery here)
- t is the explanatory variable (time here)
- f is the mean function to estimate
- \bullet ε is a noise related to measurement error

GPR is a Bayesian approach where we set a GP prior on f with mean m (usually set to zero) and a parametric kernel k



• Estimation of hyperparameters of the GP by maximizing the marginal likelihood given the training data

$$p(y_1,\cdots,y_n|t_1,\cdots,t_n)$$

- After that, we can compute the posterior law of f at new inputs
- Vanilla GPs implemented in the Python library GPflow (see https://www.gpflow.org/)

We applied vanilla GPs to obtain an interpretable model

$$y = f_1(t) + f_2(t) + f_3(t, b) + \varepsilon$$

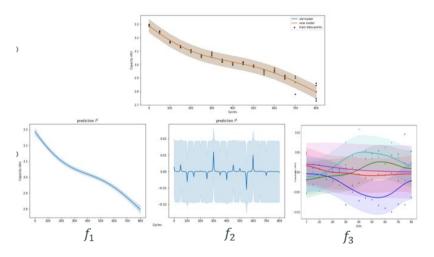
where

• f₁ : degradation trend

• f_2 : bias at each cycle

• f₃: inter battery variability

 \bullet ε : noise measurement



Prediction with Vanilla GPs

Main drawbacks of Vanilla GPs

Two main physical features of the degradation process are not included

- The variance of the phenomena is increasing with time
- The capacity is decreasing with time

Our solution: chained GPs including monotonicity constraints

Table of contents

- Industrial context
- 2 Background on GPs
- Chained GPs
- 4 Inclusion of prior knowledge on derivatives

- Chained GPs are models to handle models depending non linearly on several independent GPs
- Instead of considering

$$y = f_1(t) + f_2(t) + f_3(t,b) + \varepsilon$$

one consider

$$y = f_1(t) + f_2(t) + \sigma(t)f_3(t, b) + \varepsilon$$

where $\sigma(t) = g(\eta(t))$ with η GP, g positive function (sigmoid for e.g.)

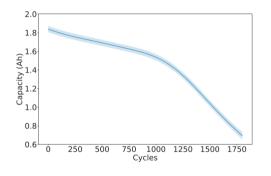
Inference step

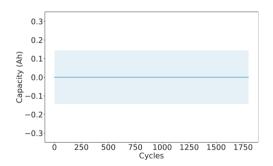
Starting point : likelihood function

$$p(y|f_1,\cdots,f_3,\eta)$$

- One sets independent Gaussian process priors on f_1, f_2, f_3, η
- Model too complex to have an exact posterior law
 ⇒ has to be approximated
- variational inference approach with optimization of the evidence lower bound (ELBO)

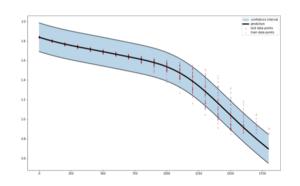
Qualitative results

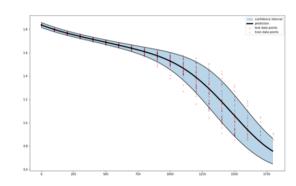




Prediction with CGPs

Qualitative results





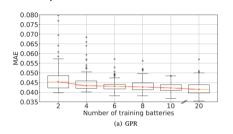
Prediction with CGPs

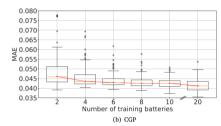
Quantitative comparison between GPR and CGP models

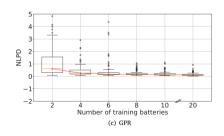
- Metric to validate prediction : mean absolute error (MAE)
- Metric to validate uncertainty quantification: negative log predictive density (NLPD)
 (Quinonro 2005)

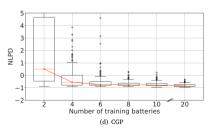
$$NLPD = -\frac{1}{n^*} \sum_{i=1}^{n^*} \log p(y_i^* | t_i^*)$$

Quantitative comparison between GPR and CGP models

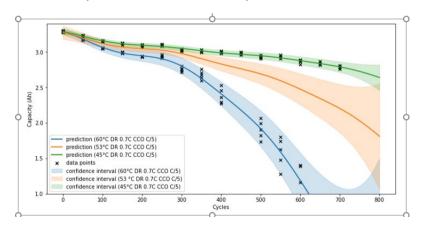








Previous model can be adapted to work on several experimental conditions



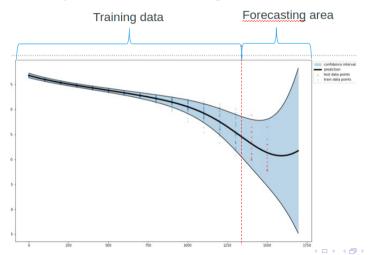
Prediction with CGPs at different temperature conditions

Table of contents

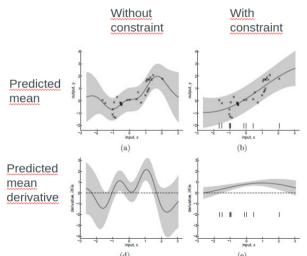
- Industrial context
- 2 Background on GPs
- Chained GPs
- 4 Inclusion of prior knowledge on derivatives

Limits of GPR and CGP for forecasting

- Methods using Gaussian processes face difficulties to forecast
- Predictions for future cycles should be decreasing



- (Riihimaki, 2010) proposed a method to impose local monotonocity on GPR
- Extension of this method for CGPs?

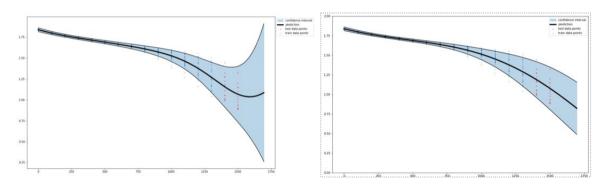


- We add virtual points translating our prior knowledge.
- At positions X^{ν} we add virtual observations z^{ν} taking values in $\{0,1\}$, 0 if f_d should be decreasing, 1 if it should be increasing.
- To integrate them into our model, we suppose that

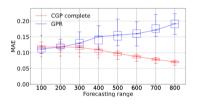
$$\mathsf{z}_i^{\mathsf{v}}|\mathsf{f}_{d,i}'\sim\mathcal{B}(\mathsf{s}(\mathsf{f}_{d,i}')),$$

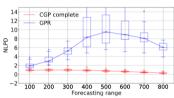
- Including virtual observations, the model has an extended likelihood
- We use variational inference based on a ELBO for inference

Qualitative comparison

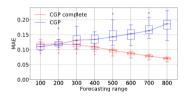


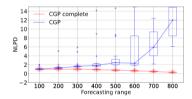
Quantitative comparison



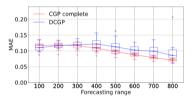


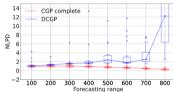
Quantitative comparison





Quantitative comparison





In practice several constraints can be included at the same time

- On each function of the Chained Gaussian process model: mean and inter-batteries variability
- On different directions when working with different experiental factors : mean of capacity decreases with time and temperature
- On different order of derivatives; second order derivative to model acceleration of capacity degradation

References

- Diao et al. (2019). "Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells" In: Journal of Power Sources
- Li et al. (2021). "One-shot battery degradation trajectory prediction with deep learning". In: Journal of Power Sources
- Lucu, M et al. (2020). "Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data-Part B: Cycling operation". In: Journal of Energy Storage
- Rasmussen et al. (2006). Gaussian processes for machine learning. MIT press.
- Saul, Alan D et al. (2016). "Chained gaussian processes". In: Artificial Intelligence and Statistics. PMLR, pp. 1431–1440

References

Papers of Benjamin

- B.Lavaron, M. Clausel, A. Bertoncello, S. Benjamin, G. Oppenheim. Chained Gaussian processes with derivative information to forecast battery health degradation. Journal of Energy Storage, 2023.
- ▶ B.Lavaron, M. Clausel, A. Bertoncello, S. Benjamin, G. Oppenheim. Chained Gaussian processes to estimate battery health degradation with uncertainties. Journal of Energy Storage, 2023.
- B. Larvaron, M. Clausel, A. Bertoncello, S. Benjamin, G. Oppenheim, C. Bertin. Conditional Wasserstein barycenters to predict battery health degradation at unobserved experimental conditions. Journal of Energy Storage. 2024 vol 78 (2024)

Patent

B.Lavaron, A. Bertoncello, M. Clausel, S. Benjamin, G. Oppenheim, A method for characterizing the evolution of state of health of a device with duration of operation. US Patent PCT/EP2023/070831