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Industrial context

Global context on Lithium-ion batteries
@ Growing demand of Lithium-ion batteries for electrical vehicles and energy storage
@ Investments of TotalEnergies with SAFT on this field
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Industrial context

@ For a new battery design it is important to model its degradation
» To set its price (lifetime models)
» To understand the ageing mechanism

@ Some long and expensive tests are performed (several months or even years)
@ Several indicators of state-of-health can be considered
@ Here we focus on the decreasing of the capacity of the battery with time
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Industrial context

Lifetime prediction?
@ Difficulties to predict batteries lifetime: complex ageing mechanisms, cost of testing ...
@ Need to determine uncertainties to assess financial risks

@ Explain battery lifetime, find solutions to improve it
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Industrial context

Which data?
@ Few industrial data available in our contextl!

@ Increasing quantity of public data

Location with weblink Paper ref  Cell (form size chemistry) Test variables Data given No. of cells
NASA [53, URL] [10] 18650 2 Ah (?) Dhrg, T QIR VLT 34
[9] 18650 2.2 Ah LCO Chrg, Dhrg, T QIR VLT 28
CALCE [67, URL] [68,70] prismatic 1.1 Ah LCO Chrg, Dhrg QIREVIT 15
[68,70] prismatic 1.35 Ah LCO Chrg, Dhrg, T QIREVIT 12
[13] pouch 1.5 Ah LCO Chrg, DOD Qv 16
TRI [71, URL] [6] 18650 1.1 Ah LFP/gr Chrg QIR VLT 124
[72] Chrg QV.LT 233
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Industrial context

Goals

@ Model with uncertainties the time evolution of state of health of a population of batteries
given the experimental conditions

@ Important focus on uncertainties modeling to assess the financial risk related to
performance guarantees

@ Choice to model the complete health degradation not only lifetime

@ Not application dependant and provides a more complete understanding of the degradation
process
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Industrial context
Modelling uncertainties?
@ Aachen university dataset

@ 47 batteries, one experimental condition (25°C, CC at 2C until 3.9V and CV until 30
minutes)

@ Ideal to model uncertainties and for forecasting

An important source of uncertainties is the inter-battery variability which increases with time
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Industrial context

A Data-driven approach relying on Gaussian processes (GPs) [See Rasmussen 2006]
o Can automaticaly learn complex functions
@ Naturally include uncertainties

@ Allow use of prior knowledge

@ Can be used with few data
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Background on GPs

@ GPs are extensions of Gaussian vectors
@ Random functions f defined thanks to
» a mean function m : m(t) = E[f(t)]
» a kernel k encoding the covariance of (f(t), f(t')) :

k(t, ') = B[(f(t) — m(£))(f(t") — m(t"))]

@ The choice of the kernel has a major influence on the GP.
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Gaussian processes regression (GPR)

Vanilla GPR considers the following regression model

y="1f(t)+e
where
@ y is the variable to explain (capacity of the battery here)
@ t is the explanatory variable (time here)
@ f is the mean function to estimate

@ ¢ is a noise related to measurement error
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Gaussian processes regression (GPR)

GPR is a Bayesian approach where we set a GP prior on f with mean m (usually set to zero)
and a parametric kernel k

Prior (no data)
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Gaussian processes regression (GPR)

e Estimation of hyperparameters of the GP by maximizing the marginal likelihood given the
training data

p(yt, - yaltL, -, ta)
o After that, we can compute the posterior law of f at new inputs

@ Vanilla GPs implemented in the Python library GPflow (see https://www.gpflow.org/)
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Gaussian processes regression (GPR)

We applied vanilla GPs to obtain an interpretable model
y = f(t) + fo(t) + f3(t, b) + ¢

where

~

@ f; : degradation trend
> : bias at each cycle

°
@ f3 : inter battery variability
°

€ : noise measurement
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Gaussian processes regression (GPR)
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Gaussian processes regression (GPR)

Main drawbacks of Vanilla GPs
Two main physical features of the degradation process are not included
@ The variance of the phenomena is increasing with time

@ The capacity is decreasing with time

Our solution : chained GPs including monotonicity constraints
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Chained GPs [Saul et al. 2016]

e Chained GPs are models to handle models depending non linearly on several independent
GPs

@ Instead of considering
y = f(t) + f(t) + f(t, b) +

one consider
y = fi(t) + h(t) + o(t)(t,b) + &

where o(t) = g(n(t)) with n GP, g positive function (sigmoid for e.g.)
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Chained GPs [Saul et al. 2016]

Inference step
@ Starting point : likelihood function

p(.y|ﬁ.7 af3777)

@ One sets independent Gaussian process priors on fi, f>, f3,7

@ Model too complex to have an exact posterior law
= has to be approximated

@ variational inference approach with optimization of the evidence lower bound (ELBO)
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Chained GPs [Saul et al. 2016]

Qualitative results
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Chained GPs [Saul et al. 2016]

Qualitative results

Prediction with CGPs
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Chained GPs [Saul et al. 2016]

Quantitative comparison between GPR and CGP models
@ Metric to validate prediction : mean absolute error (MAE)

@ Metric to validate uncertainty quantification : negative log predictive density (NLPD)
(Quinonro 2005)

1 &
NLPD = —— S7| | g
— ; og p(y7|t})

M. Clausel (CRAN) (Industrial collaboration with S Handling uncertainties 23 /37



Chained GPs [Saul et al.

Quantitative comparison between GPR and CGP models

2016]
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Chained GPs [Saul et al. 2016]

Previous model can be adapted to work on several experimental conditions
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Limits of GPR and CGP for forecasting

@ Methods using Gaussian processes face difficulties to forecast
o Predictions for future cycles should be decreasing

Training data Forecasting area

o 0 0 0 w000 w0 - 1500 s
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CGPs with monotonocity constraint (Lavaron et al. 2023)

o (Riihimaki, 2010) proposed a method to impose local monotonocity on GPR
@ Extension of this method for CGPs?
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CGPs with monotonocity constraint (Lavaron et al. 2023)

@ We add virtual points translating our prior knowledge.

@ At positions X" we add virtual observations z" taking values in {0, 1}, 0 if f; should be
decreasing, 1 if it should be increasing.

@ To integrate them into our model, we suppose that

Z)'/‘fél,i ~ B(S(f:ti))a
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CGPs with monotonocity constraint (Lavaron et al. 2023)

@ Including virtual observations, the model has an extended likelihood

@ We use variational inference based on a ELBO for inference
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CGPs with monotonocity constraint (Lavaron et al. 2023)

Qualitative comparison
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CGPs with monotonocity constraint Lavaron er al. 2023

Quantitative comparison
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CGPs with monotonocity constraint (Lavaron et al.

Quantitative comparison

2023)
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CGPs with monotonocity constraint (Lavaron et al. 2023)

Quantitative comparison
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CGPs with monotonocity constraint (Lavaron et al. 2023)

In practice several constraints can be included at the same time
@ On each function of the Chained Gaussian process model : mean and inter-batteries
variability
@ On different directions when working with different experiental factors : mean of capacity
decreases with time and temperature

@ On different order of derivatives ; second order derivative to model acceleration of capacity
degradation
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