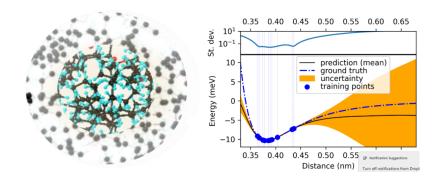


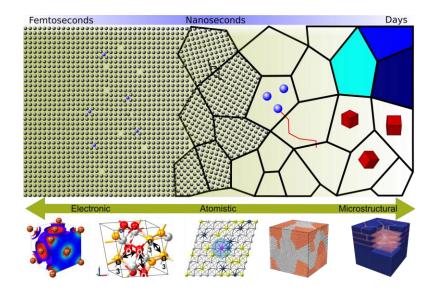
Machine and Human Learning of Materials

Leonid Kahle

Research Scientist, Materials Design S.A.R.L

17 Oct 2025





Human Learning of Materials

Human Learning Timeline

PostDoc at IBM Research Zurich on NILP Scientist at Materials Design S.A.R.L. of battery materials (2015-2019) BSC (Materials Science) in Kiel Numerical simulations at Bosch Research, Cambridge (USA) PhD at EPFL on simulations MSc in Materials Science,

2010-2013

2013-2015

2015

2015-2019

2020-2021

2021-present

Kiel (D)

EPF Lausanne (CH)

Cambridge (US) IBM Zurich (CH)

Thun (CH)

Materials Design

Legacy: Founded 1998, serving 700+ institutions worldwide.

Our Mission: Creating Engineering Value from Materials Simulations.

Offerings: MedeA® software, support, consulting, and contract research.

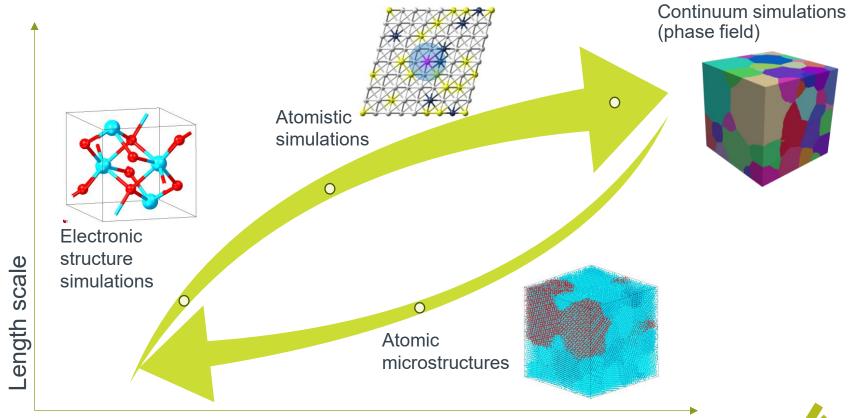
Presence: Headquartered in San Diego, USA, and Paris, Europe.

Partnerships: Collaborating with technology and business partners globally.

Expertise: Computational materials science, chemistry, chemical engineering.

www.materialsdesign.com

Accessing different time and length scales



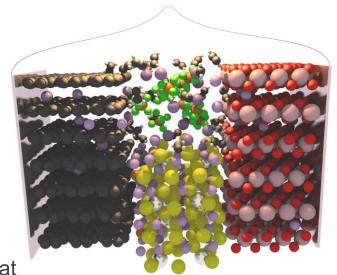
Time scale

Machine Learning of Materials

Material Science at the atomic scale

Task: finding a better battery material!

How much Li fits into the anode?

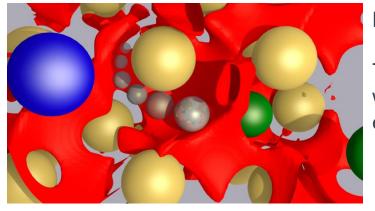


What is the voltage of an anode/cathode?

What are good materials for

electrolytes with high electronic resistance and high ionic conductivity?

What is the ground truth?

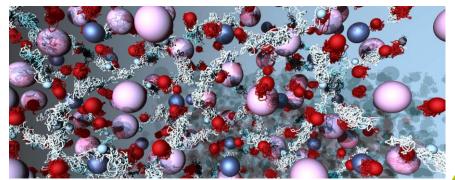


Electronic properties: $\widehat{H}\Psi = E \Psi$

To calculate electronic properties from first principles, we need to solve (approximations to) the Schrödinger's equation.

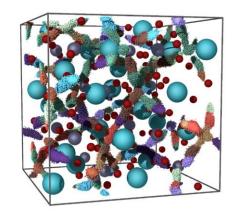
Dynamic properties: F = ma

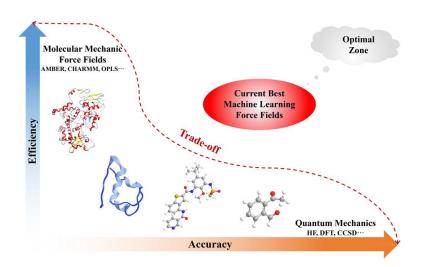
To calculate dynamic properties, we integrate the forces on atoms over time.



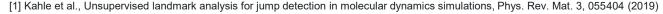
Machine learning in dynamic simulations

Machine learning can help analyze simulations with "classical" methods, e.g., using unsupervised learning of the atomic environment [1]

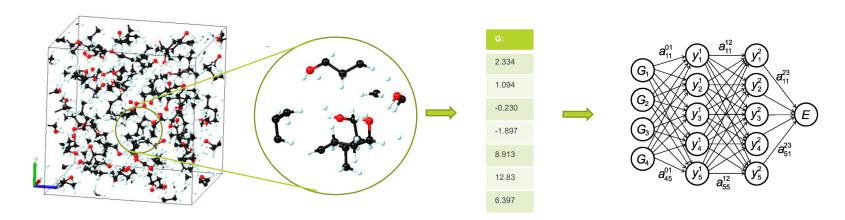




Machine learning interatomic potentials can drive dynamic simulation combining high accuracy of advanced QM methods at the cost of empirical potentials.



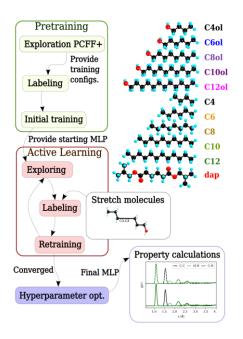
Obtaining an Atomistic ML Potential for Organics



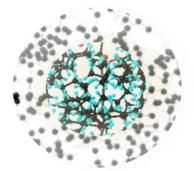
Challenge in organic liquids are the different contributions:

- Complex, strong, short-range covalent bonding.
- Simple, weaker, long-range vdW and electrostatic interactions.
- Very complex environments.

Learning about alcohol!

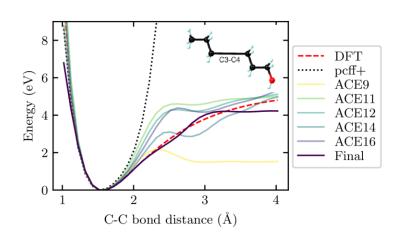


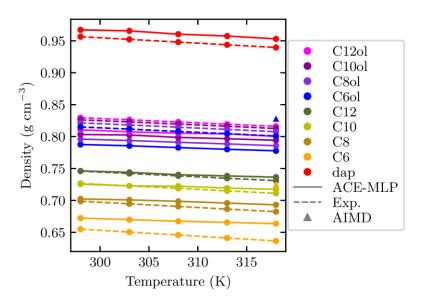
- An industry client wants to understand heat transfer between metals and alcohols
- No empirical model → Train a machine learning interatomic potential (MLIP)
- Complex short intramolecular and simple long-range intermolecular interactions -> A dual cutoff MLIP
- Active learning for training set generation.



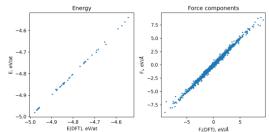
Kahle et al., A dual-cutoff machine-learned potential for condensed organic systems obtained via uncertainty-guided active learning, Phys. Chem. Chem. Phys., 2024, 26, 22665

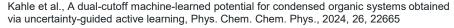
Learning about alcohol!





- Subsequent iterations of active learning improve results.
- How to add training data is the key!
- Good final reproduction of density (not trained!)





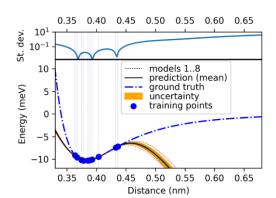
Predicting Uncertainty of Deep Models

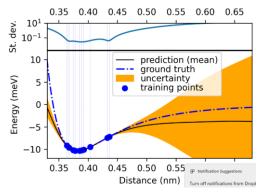
ML predictors extrapolate badly (hallucinations)

Name 5 fruits with 2 times the letter R

Here are 5 fruits that each contain the letter R twice:

- 1. Cherry
- 2. Currant
- 3. Blackbe<mark>rr</mark>y
- 4. Raspberry
- 5. Strawberry
- The same can happen with MLIPs, *out-of-distribution* predictions will be wrong and we don't know!
- How can we estimate deep NN uncertainty?





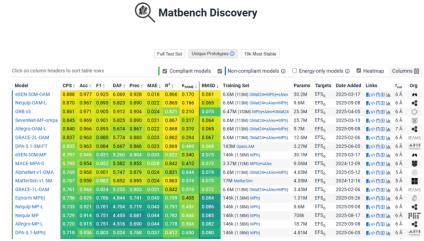
Kahle and Zipoli., Quality of uncertainty estimates from neural network potential ensembles, PRE 105, 015311 (2022)

Making predictions...

Trends and observations, predictions and hallucinations

Trends and observations:

- A new ML model every few months.
- Foundational MLIPs are coming.
- Do we have the right performance metrics?
- Data quality & quantity is a challenge.



https://matbench-discovery.materialsproject.org/

3 predictions for ML in (materials) science:

- Al will not replace creative thinkers with domain knowledge.
- Understanding underlying theory (of ML and materials science) is key to progress.
- Bright future for machine-learning experts in materials science.

