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Human Learning Timeline

Materials Design 2025
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Materials Design

Legacy: 

Our Mission: 

Offerings:

Presence: 

Partnerships: 

Expertise:

Materials Design 2025

Founded 1998, serving 700+ institutions worldwide.

Creating Engineering Value from Materials Simulations.

MedeA® software, support, consulting, and contract research. 

Headquartered in San Diego, USA, and Paris, Europe.

Collaborating with technology and business partners globally.

Computational materials science, chemistry, chemical engineering.

www.materialsdesign.com

http://www.materialsdesign.com/
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Material Science at the atomic scale

Materials Design 2025

How much Li fits into the 

anode?

Task: finding a better battery material!

What is the voltage of an 

anode/cathode?

Which materials are stable at 

such voltages?

What are good materials for 

electrolytes with high 

electronic resistance and high 

ionic conductivity?
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What is the ground truth?

Materials Design 2025

Electronic properties: ෡𝐻Ψ = 𝐸 Ψ

To calculate electronic properties from first principles, 

we need to solve (approximations to) the Schrödinger’s 

equation.

Dynamic properties: 𝐹 = 𝑚𝑎

To calculate dynamic properties, we 

integrate the forces on atoms over 

time.
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Machine learning in dynamic simulations

Materials Design 2025

Machine learning interatomic potentials can drive 

dynamic simulation combining high accuracy of 

advanced QM methods at the cost of empirical 

potentials.

Machine learning can help analyze simulations with 

“classical” methods, e.g., using unsupervised 

learning of the atomic environment [1]

[1] Kahle et al., Unsupervised landmark analysis for jump detection in molecular dynamics simulations, Phys. Rev. Mat. 3, 055404 (2019)
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Obtaining an Atomistic ML Potential for Organics

Challenge in organic liquids are the different contributions:

• Complex, strong, short-range covalent bonding.

• Simple, weaker, long-range vdW and electrostatic interactions.

• Very complex environments.

G:
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Learning about alcohol!

Materials Design 2025

• An industry client wants to understand heat transfer 

between metals and alcohols

• No empirical model → Train a machine learning 

interatomic potential (MLIP)

• Complex short intramolecular and simple long-range 

intermolecular interactions -> A dual cutoff MLIP

• Active learning for training set generation.

Kahle et al., A dual-cutoff machine-learned potential for condensed organic systems obtained via 

uncertainty-guided active learning, Phys. Chem. Chem. Phys., 2024, 26, 22665
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• Subsequent iterations of active learning improve results.

• How to add training data is the key!

• Good final reproduction of density (not trained!)

Kahle et al., A dual-cutoff machine-learned potential for condensed organic systems obtained

via uncertainty-guided active learning, Phys. Chem. Chem. Phys., 2024, 26, 22665

Learning about alcohol!
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Predicting Uncertainty of Deep Models

Materials Design 2025

• ML predictors extrapolate badly (hallucinations)

• The same can happen with MLIPs, out-of-distribution 

predictions will be wrong – and we don’t know!

• How can we estimate deep NN uncertainty?

Kahle and Zipoli., Quality of uncertainty estimates from neural network potential ensembles, PRE 105, 015311 (2022)
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Trends and observations, predictions and hallucinations

Materials Design 2025

https://matbench-discovery.materialsproject.org/

Trends and observations: 

• A new ML model every few months.

• Foundational MLIPs are coming.

• Do we have the right performance metrics ?

• Data quality & quantity is a challenge.

3 predictions for ML in (materials) science:

• AI will not replace creative thinkers with domain knowledge.

• Understanding underlying theory (of ML and materials science) is key to progress.

• Bright future for machine-learning experts in materials science.

https://matbench-discovery.materialsproject.org/
https://matbench-discovery.materialsproject.org/
https://matbench-discovery.materialsproject.org/
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